Convección Natural en Calentadores Indirectos Correlaciones vs CFD

Comparación de correlaciones y CFD utilizando herramientas StarCCM+

Expert Partner S

SIEMENS

Agenda

Experiencia previa

Caso de estudio: Calentador Indirecto Eléctrico

- Geometría
- Mallado
- Modelado
- Resultados
- Comparativa
- Trabajos futuros

Amplia experiencia en diseño y verificación de calentadores en baño de vapor y baño de agua.

Amplia experiencia en diseño y verificación de calentadores en baño de vapor y baño de agua.

Agradecimientos a MEIP y TECNO Heaters

Otros trabajos en CFD

STAR-CCM+

 Kanalisa
 Expert Partner

 Ingeniería Colaborativa
 Digital Industries Software

Otros trabajos en CFD

Caso de Estudio: Calentador Indirecto Eléctrico

 Necesidad de simplificar geometría y obtener modelo representativo.

Simcenter STAR-CCM+

- Simplificación a partir de modelo mecánico 3D.
- Únicamente se consideran las resistencias y el mazo de intercambio, descartando estructuras internas.

- 4 resistencias de 160 kW
- Carcasa de 2 m x 3.5 m

Simcenter STAR-CCM+

- Utilización de simetría para reducción de elementos y costo computacional.
- Resistencias como medios porosos dentro del dominio fluido.
- Mazo con espesor, dominio sólido.

Page 14 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

• Utilización de elementos poliedricos.

Parametros comunes:

- Curvature: 72 points/circle
- Surface growth rate: 1.3
- Volume growth rate: 1.2
- Target surface: 100%
- Minimum surface: 1%

16,466,622 elementos

Fluido:

- Base size: 0.05 m
- Proximity: 5 cells
- Prism layers: 5
- Prism total thickness: 6 mm
- Max Tet size: 500% (0.25m)

10,933,770 elementos

- automated Mesh
- 🗝 📄 Meshers
 - Surface Remesher
 - Automatic Surface Repair
 - Polyhedral Mesher
 - 🛯 🔍 Prism Layer Mesher
- Default Controls
 - Base Size 9
 - CAD Projection
 - Target Surface Size
 - Minimum Surface Size
 - Surface Curvature
 - Surface Proximity
 - Surface Growth Rate
 - Auto-Repair Minimum Proximity
 - Number of Prism Layers
 - Prism Layer Stretching
 - Prism Layer Total Thickness
 - Volume Growth Rate
 - Maximum Tet Size
 - Core Mesh Optimization
- Post Mesh Optimization

Los parámetros de tamaño e inflation fueron analizados en un estudio previo.

Mazo:

- Cylinder Mesher
- Base size: 0.05 m
- Proximity: 2 cells
- Max Tet size: 1000% (0.5m)

140,281 elementos

- 🕆 🚡 Automated Mesh 2 🖓
 - 🗝 🚞 Meshers
 - Surface Remesher
 - Generalized Cylinder Mesher
 - Tetrahedral Mesher
 - 🗝 🚞 Default Controls
 - Base Size
 - CAD Projection
 - Target Surface Size
 - Minimum Surface Size
 - Surface Curvature
 - Surface Proximity
 - Surface Growth Rate
 - Volume Growth Rate
 - Maximum Tet Size
 - Core Mesh Optimization
 - Post Mesh Optimization
 - Custom Controls

Resistencias:

- Cylinder Mesher
- Base size: 0.1 m
- Proximity: 2 cells
- Max Tet size: 500% (0.5m)

5,392,571 elementos

🔸 🛅 Automated Mesh 3 🖓

🖻 📄 Meshers

- Surface Remesher
- Automatic Surface Repair
- Polyhedral Mesher
- Generalized Cylinder Mesher
- 🗝 🚞 Default Controls
 - Base Size
 - CAD Projection
 - Target Surface Size
 - Minimum Surface Size
 - Surface Curvature
 - Surface Proximity
 - Surface Growth Rate
 - Auto-Repair Minimum Proximity
 - Volume Growth Rate
 - Maximum Tet Size
 - Ore Mesh Optimization
 - Post Mesh Optimization
- 📄 Custom Controls

Mallado – Visualización en todo el dominio

Page 19 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

Modelado

Modelado

- Kanalisa
 Expert Partner

 Ingenieria Colaborativa
 Digital Industries Software
- 📄 Geometry Geometry 🗎 Continua Continua Turbulencia: SST k-ω Parts Meshes Parts Meshes Physics 1 Physics 1 Energía: Coupled Models Physics 2 Adaptive Time-Step Models • Tiempo: Implicit All y+ Wall Treatment Adaptive Time-Step Coupled Energy Onstant Density • Fluido: Agua IAPWS-IF97 Oupled Flow Coupled Solid Energy Gradients Gradients Sólido: Acero Carbono Gravity Implicit Unsteady IAPWS-IF97 (Water) 👻 💿 Solid Medio poroso Implicit Unsteady Carbon Steel K-Omega Turbulence Solution Interpolation • Inertial resistance tensor: 80,000 kg/m⁴ ► 🔍 Liquid Three Dimensional Reynolds-Averaged Navier-Stokes Reference Values Solution Interpolation Initial Conditions ▶ 🧿 SST (Menter) K-Omega Three Dimensional Turbulent Wall Distance Reference Values Initial Conditions <u>ا ا ا ا</u>

Modelado

Condiciones de Contorno

Dentro del mazo:

- h externo: 900 W/m²K
- Temperatura externa: 303 K

Medio poroso:

 Fuente de calor: 1,234,568 W/m³ (160 kW por coil)

Cuerpo:

Adiabatico hacia exterior

Inicialización:

• Temperatura uniforme: 356 K

• Medio estático

Paso de tiempo: Inicial: 1x10⁻⁴ s Adaptativo: 0.1 s

Residuos

Expert Partner

Page 26 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

Heat Transfer Coefficient

 Kanalis
 Expert Partner

 Ingenieria Colaborativa
 Digital Industries Software

Formación de patrones de flujo favorables gracias a la configuración adoptada

Page 28 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

Resultados – Resampled Volume لم X-Plan Partner SIEMENS Ingeniería Colaborativa

Resultados – Sondas de Temperatura

 Kanalisa
 Expert Partner
 SIEMENS

 Ingenieria Colaborativa
 Digital Industries Software

Patrón típico de convección natural en tubos inferiores centrales

Patrón turbulento en tubos laterales y en tubos superiores

Page 32 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

Page 33 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

$$Nu = \frac{hD}{k} = 0.114(Gr \cdot Pr)^{1/3}$$

Correlación de convección natural HTC: 826 W/m²K Temperatura media: 79.5 °C

Coeficiente y temperatura calculados mediante correlación: McAdams W.H.: *Heat Transmission.* New York: McGraw-Hill, 1954.

Page 34 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

Business challenges, engineering solutions.

Temperature

Coeficiente y temperatura calculados mediante correlación: McAdams W.H.: *Heat Transmission.* New York: McGraw-Hill, 1954.

Page 35 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

Heat Transfer Coefficient

TRANSEPARATION Business challenges, engineering solutions.

Coeficiente y temperatura calculados mediante correlación: McAdams W.H.: Heat Transmission. New York: McGraw-Hill, 1954.

Page 36 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

TRANSEPARATIÓN Business challenges, engineering solutions.

Business challenges, engineering solutions.

Page 39 Simposio de Tecnología Aeroespacial y Nuclear 2022 | 2022-10-05

Trabajos Futuros

Impacto de estructuras internas.

Impacto de geometría real de resistencias y film boiling.

Análisis de PEM.

Validación con datos de campo.

¡Muchas Gracias!

Federico Petracci

Líder de Proyectos y CAE Transeparation SA Darwin 1154 1°A Loft C Buenos Aires Argentina

+54 1158652750 federico.petracci@transeparation.com

