Hacia la automatización de procesos de simulación estructural y vibro acústicos

Expert Partner

Gemelo Digital

Generación de modelos de simulación

Simulación estructural y multifísica

Page 2 Unrestricted | © Siemens 2023 | 2023-08-08 | Siemens Digital Industries Software

Enabling Simulation Process and Data Management for Simcenter

Explore the possibilities

electronognetics

Expert Partner X-Plan Ingenieria Colaborativa

Exploration

Qo

Analytics

HEEDS

SIEMENS

Data

20

Process

Management

Teamcenter

Simulation

System Simulation

Simcenter Amesim, Simcenter Flomaster Simcenter System Architect, Simcenter System Analyst Simcenter Embedded Software Designer, Simcenter Prescan

CAE Simulation

Simcenter 3D, Simcenter STAR-CCM+, Simcenter Nastran, Simcenter Femap, Simcenter FLOEFD, Simcenter MAGNET, Simcenter Madymo, Simcenter Tyre, Simcenter Motorsolve, Simcenter Speed

Physical Testing

Simcenter Testlab, Simcenter Testxpress Simcenter Tecware, Simcenter T3STER, Simcenter TERALED, Simcenter POWERTESTER

Gorassie, Stay integrated

Simcenter

Simulation & Test

fluids

Model Manager

chemistry

acoustics

Simcenter 3D

Predict mechanical performance across physics domains with comprehensive, fully-integrated CAE solution

Common engineering desktop integrating multiple disciplines

Streamline multiphysics workflows

Seamlessly connect with data management and CAD

Scalable for discipline experts, general analysts and designers

General CAD – FEM Process

Simulation Process and Data Management

Teamcenter for Simulation

Structural analysis Geometry Preparation

 Karakara
 Expert Partner

 Ingeniería Colaborativa
 Digital Industries Software

Robust Mid-surfacing tool

Reduce number of manual operations to fix sheet bodies

Dedicated geometry tools to "heal" CAE geometry

Structural analysis Meshing and properties definition

 Karana
 Expert Partner
 SIEMENS

 Ingenieria Colaborativa
 Digital Industries Software

Visual CAE Geometry audit

Shell meshing

Automated thickness definition based on geometry

SC				💾 🗖 Wind	low ▼ ∓							Simce
Fil	Home Results View Selection			Application				Step 3				
	1	tê 🥻				😪 😪 🄇	Griset	Ĉ		Create FE r	nodel	
New Sim	FEM and I ulation •	Promote WAVE	Split Body	Midsurface by Face Pairs	More	Move Delete Rep	lace Resize	Blend Mor	e			
Co	ntext 🔹	Start *	Geo	metry Preparatio	on 🔹	Synchr	onous Modeling		•			
	<u>M</u> enu ▼		• %	Within Work P	Part Only 🔻	F 🗟 🖓 🗣	- 👒 🔞					
ø	Simulation Navigator				Welcon	ne Page 🛛 🔟 (Ide	al) 100000236_AP	242_stp_i.prt	B×			
	Name C. Status		S	N	w Part File							
1	🗂 100000236_AP242_stp_i Displayed & W		ayed & W			1						
Fщ	🐨 100000236_AP242_st				Ericsson My CAE	Templates Simu	ulation					
F					▼ Templates						• F	
e						▼ Filters						
Ho-						Name		Type	Units	Relationship	Owner	
8.						Simcenter Nastr	an	Fem	Millime	ters Stand-alone	NT AUTH	^
4						💮 Simcenter Nastr	an Acoustic	Fem	Millime	ters Stand-alone	NT AUTH	
0	9				Bimcenter Nastran Vibro-Acoustic		c Fem	Millime	ters Stand-alone	NT AUTH		
				Bimcenter Nastr	an Rotor Dynamic	cs Fem	Millime	ters Stand-alone	NT AUTH	1		
						Simcenter Samo	ef	Fem	Millime	ters Stand-alone	NT AUTH	-
S						Simcenter 3D TH	nermal/Flow	Fem	Millime	ters Stand-alone	NT AUTH	
0						Simcenter 3D El	ectronic Systems	Co Fem	Millime	ters Stand-alone	NT AUTH	
6						💮 Simcenter 3D Sp	ace Systems The	rmal Fem	Millime	ters Stand-alone	NT AUTH	
-						Simcenter 3D M	ultiphysics	Fem	Millime	ters Stand-alone	NT AUTH	•
D						Bimcenter 3D A	coustics BEM	Fem	Millime	ters Stand-alone	NT AUTH	Nar
						Simcenter 3D Tr	ansient Acoustics	BEM Fem	Millime	ters Stand-alone	NT AUTH	Тур

Structural analysis Meshing and properties definition

One of the most time consuming tasks is the definition and mesh of beams.

In Simcenter 3D your can inherit the beam definition from CAD (metadata) and use it for the beam profile and plate thickness

Alternatively you can define the profiles and mesh all the beams with the same profile by meshing the CAD lines where they merge with the plates

General CAD – FEM Process

Ingeniería Colaborativa

Structural analysis Working with meshes

 Karal
 Expert Partner

 Ingenieria Colaborativa
 Digital Industries Software

Create associated geometry via *.jt format

Modify as required

Update the mesh and re run the simulation

General CAD – FEM Process

 Kanana
 Expert Partner

 Ingeniería Colaborativa
 Digital Industries Software

Integrated workflow CAE Geometry preparation

K Expert Ar-Plan Partner Ingenieria Colaborativa SIEMENS

Benefits

Almost "one click" to get geometry ready for meshing for a complete ship structure, ship section, area of interest...

Sheet bodies (panels) and geometry edges (stiffeners) are properly splited and connected (no gaps)

Integrated workflow Meshing and properties definition

Dedicated beam and shell meshing

Automation of mesh properties definition:

- Materials
- Thickness for shells
- CS properties for beams

Well organized (grouped) FE model according to properties

Color-based thickness validation

 Kanalistic
 Expert Partner

 Ingenieria Colaborativa
 Digital Industries Software

Structural analysis Load case definition

Extraction of forces and moments for specific area of interest

Use loading templates for standardized loading scenarios

Export solution for subsequent analysis on detailed structure and or Multiphysics

Library of formulas for load value calculation, e.g. Hogging

Hogging conditions:

$$M_{sw-h-min} = f_{sw} (171C_w L^2 B(C_B + 0.7) 10^{-3} - M_{wv-h-mid})$$

Damen Shipyards Using DMP Simcenter Nastran Capabilities for Faster Design Evaluation

- Faster evaluation of many design options
- Provided clear insight that vibrational energy flow from engine is below design limits for noise on board
- Enhanced ability to use very large models

Streamlining ship development with integrated digital simulation

- Using Simcenter Nastran scalable DMP Solution for fast modal analysis
- Synchronous technology for fast design iterations

"SC Nastran DMP allows the possibility to evaluate many design options."

Jerry Baffa, Damen CAE Specialist

Vibro-Acoustic Simulation

Figure 4 Frequency ranges of noise radiated by ship noise sources.²¹ (From Ref. 18, Chapter 46, Fig. 3.)

Vibro-Acoustic Simulation Noise transmission through partitions

Noise contribution from equipment by airborne noise (e.g. centrifugal pump) covering, as far as possible, modelling of:

- Equipment airborne noise pressure level, measured at 1m
- Space airborne noise properties (insulation, reverberation, etc) as applicable
- Airborne noise to underwater radiated noise transmission path

Vibro-Acoustic Simulation

Noise contribution from equipment (e.g. centrifugal pump) vibration covering, as far as possible, modelling of:

- Equipment vibration levels on elastic mounts (source data)
- Elastic mount properties (manufacturer data)
- Foundation mechanical properties from analysis of 3D model
 - Foundation mechanical properties from mobility tests, to be used on a later stage after tests are done on first of class
- Ship hull and local structure
- Noise transmission through flexible connections

Expert

Partner

SIEMENS

X-Plan

Ingeniería Colaborativa

Contact

Published by Siemens XX

First name Last name Job title Group / Region / Department XY Street 123 12345 City Country Phone +49 123 45 67 89 Mobile +49 123 45 67 89 0

E-mail firstname.lastname@siemens.com

Page 24 Unrestricted | © Siemens 2023 | 2023-08-08 | Siemens Digital Industries Software